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A B S T R A C T

Composite laminates with negative Posson’s ratios (i.e., auxetic composite laminates) were experimentally found 
to demonstrate a three-fold increase in buckling strength under uniaxial compression in comparison with the 
equivalent non-auxetic ones. To investigate whether the enhancement is genuinely due to the negative Poisson’s 
ratio (i.e., the auxeticity) or merely caused by the concurrent change in the bending stiffness matrix as the 
composite layup changes, a novel monoclinic plate-based composite laminate approach is proposed, which for 
the first time, allows to isolate the auxeticity effect from the concurrent change of the stiffness matrix. Results 
provided theoretical proof that the auxeticity plays an active role in enhancing the critical buckling strength of 
layered composite structure. However, such a role is dynamically sensitive to elements in the bending stiffness 
matrix, especially the bending-twisting ratio and the anisotropy of the bending stiffness between the longitudinal 
and lateral directions. Insights are expected to provide guidance in exploiting negative Poisson’s ratio for 
improving the stability of layered composite structures.

1. Introduction

A material with one or more negative Poisson’s ratios is referred to as 
auxetic [1-4]. For carbon fiber reinforced polymer (CFRP) matrix com
posite laminates, which is a popular class of layered composite struc
tures used in aerospace, automotive, marine, infrastructure, etc., 
auxeticity can be introduced into the laminates by tailoring the layup [5,
6]. Much of the interest in auxetic composite laminates arises due to 
their improved impact and indentation resistance capabilities [7-14]. 
For instance, Aziz [15] reported that for auxetic and equivalent 
non-auxetic CFRP composite laminates with similar longitudinal moduli 
of 64.8 and 61.7 GPa, respectively, and in-plane Poisson’s ratios of 
− 0.134 and 0.446, respectively, there was a 19 % increase in peak load 
and a 27 % increase in the energy absorbed for the auxetic laminate in 
comparison to the non-auxetic laminate under quasi-static indentation 
tests.

In addition to indentation and impact, for the first time, we show that 
the stability of the composite laminates can be enhanced by introducing 
auxeticity. Fig. 1 shows schematics of auxetic composite laminates 
subjected to uniaxial compression under two conditions, one with two 
unloaded edges (i.e., left and right edges) being free (see Fig. 1(a)) and 
the other with the two unloaded edges being simply supported (see 

Fig. 1(b)). For both schematics, the dashed line represents the original 
undeformed shape, and the solid line represents the deformed shape. 
Unlike traditional non-auxetic materials which expand in the lateral 
direction, the auxetic composite laminate contracts in the lateral di
rection when the two unloaded edges are free, producing compressive 
strain in the lateral direction (Fig. 1(a)), as indicated by the pink arrows 
where the length of the arrow represents the magnitude of the 
compressive strain. The aggregation of the compressive strains in the 
center of the auxetic composite produces a local material densification 
effect, which is expected to enhance the stability (i.e., improved buck
ling resistance). When the two unloaded edges are simply supported 
(Fig. 1(b)), the uniaxial compression produces tensile strain (yellow 
arrows) only in the vicinity of the unloaded edges whereas primarily 
compressive strain in regions away from the two edges. A similar local 
material densification is expected as the compressive strain forces the 
material to flow into the center of the laminate, thereby enhancing the 
stability.

In authors’ prior work [16], it was found through both experiments 
and FEA predictions that the critical buckling load of an auxetic CFRP 
composite laminate is about three times higher than that of an equiva
lent non-auxetic laminate under uniaxial compression and with free 
unloaded edges. Despite the enhancement in the buckling load that has 
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been observed in the experiments, it remains fundamentally unclear if 
such an improvement is really due to the auxeticity (i.e., negative 
Poisson’s ratio) or just simply caused by the change in the bending 
stiffness matrix (D matrix) as the composite layup changes. This ambi
guity results from the fact that the D matrix normally governs the 
buckling strength of composite laminates [17] and that, in order to 
produce the negative Poisson’s ratio, the layup must be specially 
adjusted, which simultaneously modifies the D matrix. Solving such a 
fundamental question is not only important to prevent the misinter
pretation about the influence of negative Poisson’s ratio on the stability 
of composites, but also crucial for many related studies on composites 
that look into the performance gains of adding auxeticity (e.g., energy 
absorption [10,18], translaminar fracture toughness [19]). However, 
since the auxeticity and the D matrix change are tightly coupled, it is 
difficult to separate the auxeticity effect from the concurrent D matrix 
change. To solve this challenge, in this study, we developed and utilized 
a novel approach based on a homogeneous monoclinic plate with 
matched D matrix as the composite laminate to theoretically prove the 
role of negative Poisson’s ratio in enhancing the buckling strength of 
composite laminate.

2. Uniaxial compression buckling test

The CFRP composite plates used in the current study were manu
factured by sandwiching each IM7/977–3 carbon fiber prepreg tape 
layup between upper and lower caul plates, inserting the assembly into 
an autoclave, and following the manufacturer’s recommended cure 
cycle. Upon demolding, both laminate types exhibited a very slight 
warpage (<1 mm of lift) on their two corners along the − 45◦ diagonal. 
This occurred due to excess resin along the edges of the caul plate. This 
area was removed by trimming off 12 mm strips along the four edges of 
both laminates. Each laminate had an as-manufactured thickness of 0.7 
mm, from which 139.7 mm long by 30 mm wide specimens were cut.

Fig. 2(a) shows the setup for the uniaxial compressive buckling test. 
The test fixture of the uniaxial compression buckling test is mounted in a 
servo-hydraulic MTS load frame. The upper and lower base plates have 
flat surfaces which impose a uniform shortening displacement across the 
specimen’s width. The upper and lower surfaces also contain slide plates 

to further ensure out-of-plate alignment of the fixtures, as annotated in 
Fig. 2(a). Prior to each test, the slide plates were tightened against the 
front and back faces of the specimen and bolted down as shown. The 
slide plates also locally constrained displacements in z and rotations 
about the x and y-axes, which corresponds to fixed-fixed boundary 
conditions along the top and bottom edges. Three specimens of each 
type (auxetic and non-auxetic) were tested.

Fig. 2(b) shows a typical load vs. displacement curve. Moduli were 
determined from the initial linear portion of the curve, and the straight- 
line intersection method [20,21] was used for the determination of the 
critical load (buckling strength). As illustrated, this method utilizes the 
point of intersection between two straight lines fitted to the linear 
portions of the loading and post-buckling paths and allows for an un
ambiguous definition of the critical load.

3. Buckling load predictions

A finite element (FE) model was created to predict critical buckling 
loads using the general-purpose FE software, ABAQUS. The model setup 
and the associated mesh is shown in Fig. 3(a), where the composite 
laminate was modeled using two-dimensional shell elements. Fixed end 
boundary conditions were utilized that replicated those of the experi
mental setup. A unit shell edge load of 1 N/mm was applied, which 
distributes the load equally along the upper edge nodes. The model was 
used to compute load per unit width eigenvalues. The critical buckling 
load was taken as the lowest predicted eigenvalue multiplied by the 
specimen’s width of 30 mm. Fig. 3(b) shows the example Shell General 
Stiffness module in the FE model, which uses the A (MPa•mm), B 
(MPa•mm2), and D (MPa•mm3) matrices for defining the laminate 
stiffness and allows for individual elements to be varied and investigated 
independently.

4. Effective in-plane and flexural properties

Fig. 4(a) shows the layups of the considered composite laminates, 
where [15/65/15/65/15] allows the laminate to produce negative 
effective Poisson’s ratios of − 0.41 (in-plane) and − 0.37 (flexural) while 
[35/60/− 5/60/35] allows the laminate to produce positive effective 

Fig. 1. Schematics of local material densification in auxetic composite laminates subjected to uniaxial compression with two unloaded edges (i.e., left and right 
edges) being: (a) free and (b) simply supported.
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Poisson’s ratios of 0.16 (in-plane) and 0.06 (flexural). These effective 
Poisson’s ratios are those exhibited macroscopically at the laminate- 
level under in-plane and flexural loads. Specifically, the in-plane Pois
son’s ratio, ve

12− i, couples the longitudinal and transverse strain, and the 
flexural Poisson’s ratio, ve

12− f , couples the bending in one direction and 
the transverse curvature in the perpendicular direction. These laminate- 
level effective Poisson’s ratios along with the effective moduli can be 
calculated by the classical lamination theory using the extensional 
stiffness matrix (i.e., A matrix) and the bending stiffness matrix (i.e., D 
matrix), as discussed below.

From the A matrix, the in-plane effective properties, or the apparent 
mechanical properties of a laminate under in-plane loading, can be 
expressed in terms of the inverse of the A matrix as shown below: 

Ee
1− i =

1
(ha11)

, Ee
2− i =

1
(ha22)

, νe
12− i = −

a21

a11
,

Ge
12− i =

1
(ha66)

, νe
16− i = −

a16

a11
, νe

26− i = −
a26

a22
,

(1) 

where ℎ is thickness of the composite laminate, aij is the element in the 
inverse of the extensional stiffness matrix (a = A− 1).

Similarly, the flexural effective properties, or the apparent me
chanical properties of a laminate under flexural loading, can be 

expressed in terms of the inverse of the D matrix as shown below: 

Ee
1− f =

12
(
h3d11

), Ee
2− f =

12
(
h3d22

), νe
12− f = −

d21

d11
,

Ge
12− f =

12
(
h3d66

), νe
16− f = −

d16

d11
, νe

26− f = −
d26

d22
,

(2) 

where dij is the element in the inverse of the bending stiffness matrix (d 
= D− 1).

The ply-level engineering constants of the IM7/977–3 prepreg are 
shown in Table 1 below, using which the A and D stiffness matrices of 
the auxetic and non-auxetic composite laminates can be calculated. 
These matrices can then be used to determine the laminate-level effec
tive in-plane and flexural properties according to Eqs. (1) and (2).

Fig. 4(b) illustrates the comparison of the critical buckling load be
tween the auxetic (116 ± 7.2 N) and non-auxetic (38 ± 1.1 N) CFRP 
composite laminates under uniaxial compression with two free unloaded 
edges. It also shows the comparison between the experimental data and 
the prediction from a traditional eigenvalue analysis using FEA (see 
Section 3), where close agreement can be observed. Moreover, the 
buckling mode predicted from FEA also compares favorably with that 
observed from the experimental test, as shown in Fig. 4(c).

Fig. 2. (a) Setup for the uniaxial compressive buckling test, (b) buckling strength determination by the straight-line intersection method.

Fig. 3. (a) The FEA model setup of compressive buckling analysis and the associated mesh, (b) an example Shell General Stiffness module in ABAQUS.
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5. Monoclinic plate-based composite laminate approach

This section addresses the necessity and rationale of the monoclinic 
plate-based approach used in the current study. First, the intuitive way 
to demonstrate how a negative Poisson’s ratio affects the buckling 
strength of composites would be to hold all other effective properties 
(Ee

1, Ee
2, Ge

12, ve
16, and ve

26) constant and adjust only the effective Poisson’s 
ratio (ve

12). This is essentially unfeasible, though, since modifying the 
layup leads to concurrent changes for all other effective properties along 
with the effective Poisson’s ratio. One alternative method is to manually 
alter the individual elements in the D matrix and then observe how such 
changes affect the overall data trends of the buckling strength between 
the auxetic and non-auxetic composite laminates. The attribution from 
the negative Poisson’s ratio is indicated if the buckling strength sub
stantially departs from each other or from their original trends. More
over, changing the D matrix elements may force the effective Poisson’s 
ratio to change from positive to negative (or vice-versa), and hence, 
influence the original data trends of the buckling strength, indicating the 
potential impact from the negative Poisson’s ratio.

To utilize the above alternative method, there are two obstacles that 
must be overcome first. The first one is that although changing the in
dividual element of the D matrix can change the flexural effective 
Poisson’s ratio (i.e., ve

12− f = − d21/d11, where d is the inverse of the D 
matrix) from negative to positive (or vice versa), the in-plane effective 
Poisson’s ratio (i.e., ve

12− i = − a21/a11, where a is the inverse of the A 

matrix) will stay negative or positive since the A matrix remains un
changed. For example, the auxetic layup of [15/65/15/65/15] allows to 
produce a negative in-plane effective Poisson’s ratio of − 0.41 and a 
negative flexural effective Poisson’s ratio of − 0.37 (see Fig. 4(a)). If we 
change the individual elements in the D matrix to manually change the 
flexural effective Poisson’s ratio from − 0.37 to a positive value, the in- 
plane effective Poisson’s ratio remains unchanged at − 0.41. Such a 
contradictory situation will cause confusion and makes it difficult to 
interpret the true influence of the negative Poisson’s ratio on the ob
servables (i.e., the buckling strength in this context). The second 
obstacle is that changing the D matrix while holding the A matrix con
stant (B = 0 for symmetric laminates) will result in a fictitious laminate, 
which may not be physically achievable.

To overcome the above-mentioned two challenges, a monoclinic 
plate-based composite laminate approach is proposed. The unique 
feature of a homogeneous monoclinic plate is that the in-plane effective 
properties are identical to the flexural effective properties. Therefore, 
creating a monoclinic plate with a matched D matrix with the auxetic 
composite laminate will result in an identical in-plane and flexural 
negative Poisson’s ratio and a synchronous change from negative to 
positive when the D matrix is altered. Fig. 4(d) shows the flow chart of 
the steps involved in creating a monoclinic plate with a matched D 
matrix from a base composite laminate (i.e., Dmono = D, where the su
perscript “mono” represents the monoclinic plate). To achieve this, the A 
matrix of the monoclinic plate, Amono, is obtained by the inverse of the 
amono, where amono = h2d/12, h is the thickness of the composite lami
nate, and d is the inverse of the D matrix. Substituting the corresponding 
elements of the newly obtained amono in Eq. (1) will lead to matched in- 
plane properties and flexural properties. Table 2 shows the calculated in- 
plane and flexural effective properties as well as D matrix elements of 
the auxetic composite laminate ([15/65/15/65/15]) (i.e., before con
version to the monoclinic plate) and the created auxetic monoclinic 
plate (i.e., after the conversion, denoted as “Aux”).

As shown in Table 2, the conversion allows the monoclinic plate to 
retain all flexural effective properties, including the Poisson’s ratio of 

Fig. 4. (a) A comparison of in-plane and flexural Poisson’s ratios for auxetic and non-auxetic layups of the composite laminates, (b) obtained critical buckling load 
auxetic laminate vs. non-auxetic laminate, (c) a comparison of the buckling shape between FEA prediction and experimental observation for the auxetic laminate, (d) 
steps of converting a composite laminate to an equivalent monoclinic plate.

Table 1 
IM7/977-3 ply-level engineering constants [22-24].

Single ply thickness 
(mm)

Elastic moduli (GPa) Ply-level Poisson’s ratios

0.140 E11 = 159, E22 = E33 =

9.20 
G12 = G13 = 4.37, G23 =

2.57

ν12 = ν13 = 0.253, ν23 =

0.456
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the original composite laminate, while at the same time, equating the 
flexural effective properties to the in-plane effective properties. In other 
words, the in-plane and flexural effective properties, including the 
Poisson’s ratios are matched for the auxetic monoclinic plate. Note that 
the monoclinic plate does not represent the layup of the original com
posite laminate. It is created separately to study how the negative 
Poisson’s ratio affects the buckling strength. Therefore, it is conceivable 
that the predicted critical buckling load of monoclinic plate from FEA 
will not match the experimental data in Fig. 4(b).

To discern the effect of auxeticity versus changes in the elements 
themselves on the buckling load, the elements of the D matrix can then 
be varied independently, as this can be considered as simply choosing a 
different monoclinic material. Given the universe of layups, materials, 
and laminate thicknesses of the composite laminates, it is clear that the 
stacking sequences of the composite laminate counterpart can be 
physically achieved for each case considered.

To conclusively establish the dependence or independence of the 
critical buckling load (N0) on the sign of the effective Poisson’s ratio, a 
counterpart laminate was required where all D matrix elements were 
essentially the same, but with a very slight difference such that one was 
auxetic and one was not. From preliminary FEA results, it was observed 
that increasing only the D12 element for the auxetic plate from 0.4022 
GPa-mm3 to 0.8609 GPa-mm3 would produce a monoclinic plate with an 
identical buckling load (under the free unloaded edge condition and with 
an aspect ratio of 0.2) that would be non-auxetic and which would have 
the same values of all other D matrix elements as the auxetic plate. This 
plate is denoted as “NA”, which provided yet another starting point for 
variations in each D matrix elements. This proposed new approach 
provides a unique tool to discern the effect of auxeticity from the con
current change in the D matrix as the composite layup changes, which 
cannot be achieved using the traditional one-parameter-at-a-time 
method.

It is worth stressing that, to the authors’ knowledge, past studies 
have only looked at the effect of different stacking sequences of com
posite laminates on variations in the buckling strength (e.g., [17,25]), 
which required the simultaneous change of all elements in the D matrix. 
Conversely, the current approach allows the effects of the individual D 
matrix elements to be isolated from the auxeticity effect. Specifically, 
four elements are individually changed including D16, D26, D22, and (D12 
+ 2D66), which correspond to the four coefficients of the governing 
equation of the instability of a composite laminate [17].

6. Results

The stability of composite laminates is highly sensitive to the 

boundary conditions and the aspect ratio of the plate (i.e., a/b, where a is 
the length and b is the width of the plate). The effect of auxeticity due to 
the local material densification phenomenon could be triggered or 
augmented as the boundary conditions and the aspect ratio of the plate 
change, which is evidenced in the results presented in Figs. 5-8. Spe
cifically, Figs. 5 and 6 present the buckling results for the auxetic and 
non-auxetic monoclinic plates with unloaded edges being free and 
simply supported, respectively, while holding the aspect ratio constant 
at a/b = 0.2. Figs. 7 and 8 show the results for those having an aspect 
ratio of a/b = 1. These results were obtained from the validated eigen
value analysis using FEA by individually changing the D matrix ele
ments. By observing the effects of respective modifications on the 
overall data trends of obtained buckling strength, the attribution from 
the negative Poisson’s ratio can be indicated if the buckling strength 
substantially departs from each other or from their original trends. 
Numerically, this was achieved by assigning a Shell General Stiffness 
section to a 2D shell plate using the general-purpose FEA software 
ABAQUS, which allowed for the manual entry of stiffness matrix values 
(including Amono, Bmono, and D matrices, where Bmono = 0 for symmetric 
laminates) while maintaining the matrices’ positive definiteness (see 
Fig. 3(b)).

Results in Fig. 5 demonstrate that when the monoclinic plate or the 
composite laminate has an aspect ratio of a/b = 0.2, auxeticity has no 
intrinsic effect on buckling strength under uniaxial compression with 
free unloaded edges. Figs. 5(a) - 5(d) illustrate how the normalized 
critical buckling load of the auxetic and non-auxetic plates is affected by 
the change in the nondimensional D matrix elements. In these figures, 
the black discrete dots denote the original auxetic and non-auxetic 
monoclinic plates where the D matrices were un-altered (i.e., exactly 
same with those in Table 2) while the red discrete dots represent cases 
where auxetic monoclinic plates (ve

12 < 0) that became non-auxetic 
(ve

12 > 0) due to the change of the individual elements in D or vice- 
versa. The same annotation format was employed in Figs. 6-8. Note 
here the critical buckling load, N0, has a unit of N∕mm, after normali
zation by the D11 element of bending stiffness matrix, the normalized 
critical buckling load has a unit of 1∕mm2 as shown in the vertical axes 
for Figs. 5-8.

In Fig. 5(a), although slight difference is observed, the normalized 
buckling load follows the same trend for both the auxetic and non- 
auxetic plates with the change of D16/D11. For the auxetic plate, there 
are two red discrete dots at D16/D11 = 0.10 and D16/D11 = 0.15, which 
indicate cases where the auxetic plate became non-auxetic due to the 
change in the D16 element. As one can see, there is no change in the data 
trend for the auxetic plate with varying D16 when the auxetic case be
comes non-auxetic. The normalized buckling load matched between the 
auxetic and non-auxetic plates at D16/D11 = 0.26, which is expected as 
the D matrix of the non-auxetic plate was deliberately designed to match 
the critical buckling load (see Section 4). A similar pattern can be 
observed in Fig. 5(b), where the auxetic plate became non-auxetic at 
D26/D11 = 0.05 and the non-auxetic plate became auxetic at D26/D11 =

0.17 and D26/D11 = 0.18. Such changes have not resulted in any 
noticeable changes in the data trends for either plate type. In Fig. 5(c), 
the auxetic and non-auxetic results virtually coincide as the D22/D11 
changes. No cases were found where auxetic becomes non-auxetic or vice 
versa. In Fig. 5(d), the normalized buckling load for the original auxetic 
case and non-auxetic case does not overlap, which is expected since the 
D12 element is different for the two cases (i.e., D12 = 0.4022 GPa-mm3 

for auxetic and D12 = 0.8609 GPa-mm3 for non-auxetic). Two configu
rations were taken into consideration for changing the nondimensional 
group of (D12 + 2D66)/D11: one configuration fixed D12 and merely 
varied D66, while the second configuration was the opposite. For the first 
configuration, several cases exist where the auxetic case becomes non- 
auxetic or vice versa. Nevertheless, the data trend remains and the dif
ferences between auxetic and non-auxetic stay the same as the nondi
mensional group changes. For the second configuration, the range of the 
nondimensional group of (D12 +2D66)/D11 over which the variations of 

Table 2 
Predicted effective moduli, Poisson’s ratios, and nondimensional groups of the D 
matrix.

Property Auxetic 
composite 
laminate 
[15/65/15/65/ 
15]

Auxetic 
monoclinic plate 
(“Aux”)

Non-auxetic counterpart 
monoclinic plate (“NA”)

Ee
1− i (GPa) 51.29 56.44 56.63

Ee
2− i (GPa) 25.53 21.02 21.09

ve
12− i − 0.41 − 0.37 0.36

Ee
1− f (GPa) 56.44 56.44 56.63

Ee
2− i (GPa) 21.02 21.02 21.09

ve
12− f − 0.37 − 0.37 0.36

D11 

(GPa⋅mm3)
3.26 3.26 3.26

D16 /D11 0.26 0.26 0.26
D26 /D11 0.11 0.11 0.11
D22 /D11 0.27 0.27 0.27
(D12 + 2D66)

/D11

0.41 0.41 0.55
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the normalized buckling load occur is different for the two sets of plates 
due to the limitation of the positive definiteness of the D matrix while 
varying the individual D12. Hence, such a comparison does not yield any 
conclusive findings. Fig. 5(e) shows a comparison of the buckling mode 
between the original auxetic and non-auxetic plates, where an identical 
pattern can be observed. A similar identical comparison can also be 
found for cases where the D elements vary. The combination of 

observations leads to the conclusion that auxeticity has no intrinsic ef
fect on buckling strength of the monoclinic plate with an aspect ratio of 
a/b = 0.2 under uniaxial compression with free unloaded edges. Rather, 
the differences in the buckling strength are due to differences in the 
elements of the D matrix and the way that they interact to affect the 
critical buckling load.

When the boundary condition of the two unloaded edges were 

Fig. 5. Response of normalized critical buckling load under varying (a) D16
D11

, (b) D26
D11

, (c) D22
D11

, and (d) (D12+2D66)
D11 

ratios at plate aspect ratio of a/b = 0.2 and free unloaded 
edges. (e) a comparison of the predicted buckling mode between the original auxetic and non-auxetic monoclinic plates with unaltered D matrices.

Fig. 6. Response of normalized critical buckling load under varying (a) D16
D11

, (b) D26
D11

, (c) D22
D11

, and (d) (D12+2D66)
D11 

ratios at plate aspect ratio of a/b = 0.2 and simply 
supported unloaded edges. (e) a comparison of the predicted buckling mode between the original auxetic and non-auxetic monoclinic plates with unaltered 
D matrices.
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changed to simply supported, the enhancement effect due to auxeticity 
(i.e., local material densification) is evident and started to provide 
enhancement in the buckling strength, as shown in results in Fig. 6. In 

Fig. 6(a), it shows that the overall data trend of the normalized buckling 
load of the auxetic plate is largely different from that of the non-auxetic 
one. Specifically, the non-auxetic plate showed only a slight increase as 

Fig. 7. Response of normalized critical buckling load under varying (a) D16
D11

, (b) D26
D11

, (c) D22
D11

, and (d) (D12+2D66)
D11 

ratios at plate aspect ratio of a/b = 1 and free unloaded 
edges. (e) a comparison of the predicted buckling mode between the original auxetic and non-auxetic monoclinic plates with unaltered D matrices.

Fig. 8. Response of normalized critical buckling load under varying (a) D16
D11

, (b) D26
D11

, (c) D22
D11

, and (d) (D12+2D66)
D11 

ratios at plate aspect ratio of a/b = 1 and simply 
supported unloaded edges. (e) a comparison of the predicted buckling mode between the original auxetic and non-auxetic monoclinic plates with unaltered 
D matrices.
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the D16/D11 increases, whereas the auxetic plate showed a mild increase 
first at lower D16/D11 ratios and exhibited an abrupt jump when D16 
/D11 reaches near 0.3. The difference between the auxetic and non- 
auxetic plates continuously increases as the D16/D11 increases. This 
signifies that the auxetic monoclinic plate and composite laminate, if 
designed with a larger D16/D11, i.e., physically more bending-twisting 
coupling, will receive benefit from the auxeticity effect, resulting in 
substantially improved buckling strength. The buckling modes of the 
auxetic and non-auxetic monoclinic plate at D16/D11 = 0.35 are anno
tated in Fig. 6(a), where it can be seen that the buckling pattern (i.e., the 
out-of-plane deflection) of the auxetic plate is more concentrated in the 
upper half whereas the buckling pattern of the non-auxetic plate is more 
dispersed over the whole plate. The same apparent enhancement effect 
has not been observed in Figs. 6(b) and 6(c), indicating that the negative 
Poisson’s ratio effect remains inactive as the D26/D11 and D22 /D11 
change. Although there are a few cases where the auxetic case became 
non-auxetic and vice versa in Fig. 6(b), they did not influence the overall 
data trend of either the auxetic or the non-auxetic case.

Similarly, the auxeticity effect appears to stay inactive as the 
nondimensional group (D12 +2D66)/D11 changes, specifically for the 
configuration where D66 was fixed and D12 was allowed to vary. The 
normalized buckling load shows a continuously decreasing trend 
regardless of the change in auxeticity, as shown in Fig. 6(d). For the 
opposite configuration where D12 was fixed and D66 was allowed to vary, 
the results were inconclusive. Although the data trends between the 
auxetic and non-auxetic plates appear to be largely different, especially 
for the data located on the right side of the black dots, most of the 
auxetic cases were found to have been converted from auxetic to non- 
auxetic due to the change of the D66. The difference in the normalized 
buckling load in this context is likely caused by the shift in the buckling 
modes. For example, the non-auxetic plate converted from the originally 
auxetic plate showed a single sine wave whereas the non-auxetic plate 
varied from originally non-auxetic showed multiple sine waves, as an
notated in Fig. 6(d). In addition, the enhancement effect due to aux
eticity can also be gleaned by comparing the buckling modes between 
the original auxetic and non-auxetic plates, as shown in Fig. 6(e), where 
the auxetic plate showed four sine waves due to local material densifi
cation whereas the non-auxetic plate showed only two.

The enhancement effect due to auxeticity is not only active when a 
simply supported boundary condition is imposed on the unloaded edges, 
it can also be triggered for cases where the unloaded edges are set free 
but with an increased plate aspect ratio of a/b = 1, as shown in Fig. 7. 
First, the auxeticity effect on the enhancement of the buckling strength 
was not evident in Figs. 7(a) and 7(b), where the normalized buckling 
load of auxetic and non-auxetic plates tend to vary similarly to each 
other with the change of D16/D11 and D26/D11, even for cases where 
auxetic changed to non-auxetic or vice versa. The enhancement effect 
due to auxeticity became obvious in Fig. 7(c), where the normalized 
buckling load exhibited a large difference in the data trend between the 
auxetic and non-auxetic plates on the left side of the black dots (i.e., the 
original auxetic and non-auxetic plates with un-altered D matrices) with 
the change of D22/D11. Specifically, the auxetic plate generally showed a 
decreasing trend starting from a high normalized buckling load whereas 
the non-auxetic plate displayed a rising trend beginning from a rela
tively much lower load. The buckling modes of the two cases are also 
distinct as annotated in Fig. 7(c), where the buckling pattern is dispersed 
across the entire plate in the auxetic plate whereas the buckling pattern 
is more concentrated on the left edge in the non-auxetic plate. When the 
data approached the black dots, both the auxetic and non-auxetic began 
to plateau and gradually coincide with each other. This physically shows 
that the auxeticity effect for enhancing the buckling strength can be 
triggered by lowering the D22/D11, which is the anisotropy of the 
bending stiffness between the longitudinal and the lateral directions. 
The auxeticity effect was not observed in Fig. 7(d), where changing the 
nondimensional group (D12 +2D66)/D11 in either configuration has not 
led to any noticeable difference in the data trends between the auxetic 

and non-auxetic plates, although a few auxetic cases became non- 
auxetic and one non-auxetic case turned to auxetic. A comparison of 
the buckling pattern between the original auxetic and non-auxetic plates 
(where D matrices were un-altered) is provided in Fig. 7(e). It shows that 
the two buckling patterns are identical, indicating no direct enhance
ment effect due to auxeticity in the original configuration.

The auxeticity effect for enhancing the buckling load persists as the 
boundary condition of the two unloaded edges were switched to simply 
supported for plates having an aspect ratio of a/b = 1. Fig. 8 depicts the 
comparison of buckling results between the auxetic and non-auxetic 
monoclinic plates. The enhancement effect due to the auxeticity is 
clearly observed in Fig. 8(a), where the data trends of the auxetic and 
non-auxetic plates are initially similar but significantly deviate from 
each other as the D16/D11 exceeds 0.35. As one can see, the normalized 
buckling load of the auxetic plate drastically departed from the original 
data trend and increases whereas that of the non-auxetic plate remained 
on the original data trend. This indicates that the auxeticity effect clearly 
became active as the D16/D11 exceeds the threshold. A composite 
laminate, if designed with a higher D16/D11 ratio (i.e., higher bending- 
twisting coupling), is expected to gain enhancement in the stability 
under uniaxial compression. Interestingly, the auxetic and non-auxetic 
plates show similar buckling patterns for cases where the data trends 
depart from each other. This implies that the auxeticity did not result in 
any significant changes to the buckling mode, but rather, the enhance
ment in the buckling strength could be due to the unique local material 
densification effect as shown in Fig. 1(b). The same enhancement effect 
in the buckling load due to auxeticity was not observed in Figs. 8(b)–8 
(d). It can be seen that the data trends remain virtually similar to each 
other as D26/D11, D22/D11, and the nondimensional group of 
(D12 +2D66)/D11 change. Furthermore, the buckling modes of the 
auxetic and non-auxetic plates are identical to each other, as compared 
in Fig. 8(e), indicating no direct effect attributable to the auxeticity.

7. Discussion

The results presented above demonstrate that the auxeticity effect is 
highly sensitive to the individual bending stiffness matrix elements. The 
enhancement of the buckling strength due to the auxeticity from local 
material densification could be triggered, augmented, or diminished at 
varying individual stiffness matrix elements. Specifically, our results 
indicate that for buckling critical applications, composite laminates can 
be designed by increasing the bending-twisting ratio (i.e., D16/D11) and 
decreasing the anisotropy of the bending stiffness between the longitu
dinal and lateral directions (i.e., D22/D11) to trigger the auxeticity 
enhancement effect on the buckling strength. However, doing so inevi
tably necessitates the consideration of the manufacturing challenges 
because increasing the bending-twisting ratio could lead to warping is
sues, especially in relatively thin laminates, while lowering the anisot
ropy of the bending stiffness could indicate a modification in the 
material composition. These challenges merit further application- 
oriented studies.

It is worth mentioning that the results and the proposed approach in 
this study are not only important to understand the auxeticity effect on 
the enhancement of stability of the composite laminates, but also pro
vide a unique capability to isolate the auxeticity effect from the con
current change of the stiffness matrices. Applications that can benefit 
from this capability include comparisons of a layered composite struc
tures’ resistance to low velocity impact and quasi-static indentation 
damage. Traditionally, in those studies, composite laminates were 
chosen by either matching the effective values of Ee

3 [5, 7, 8], Ee
1 [15], or 

Ee
1 and Ee

3 [11, 12]. However, for such out-of-plane loadings, the values 
of D matrix elements are also important, with their importance 
increasing as the unsupported dimensions of the plate increase. Con
clusions about the effects of auxeticity based only on matching effective 
engineering constants inevitably overlook these effects and attribute 
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them solely to auxeticity. Similar considerations can be applied to other 
loadings. For example, for tensile loading, elements of the A matrix may 
prove to be a better comparison method than through effective engi
neering constants.

8. Conclusion

Auxetic composite laminates were experimentally shown to outper
form the equivalent non-auxetic laminates by three times in the critical 
buckling strength under uniaxial compression. To investigate whether 
such an enhancement effect is due to the negative Poisson’s ratio (i.e., 
auxeticity) or simply caused by the concurrent change of the bending 
stiffness matrix (i.e., D matrix) as the layup changes, this study proposed 
a novel monoclinic plate-based composite laminate approach, which 
uniquely separates the auxeticity effect from the simultaneous change of 
the D matrix elements. Results from this study mainly lead to following 
conclusions:

The negative Poisson’s ratio (i.e., auxeticity) plays an active role in 
enhancing the critical buckling strength of composite laminates due to 
the local material densification phenomenon, where such a role is 
dynamically responsive to the D matrix elements. When the two 
unloaded edges of the composite laminates are simply supported, the 
auxeticity effect becomes active as the bending-twisting ratio (i.e., D16 
/D11) increases. Whereas when the two unloaded edges are set free, the 
auxeticity effect is triggered as the anisotropy of the bending stiffness 
between the longitudinal and lateral directions (i.e., D22 /D11) decreases.

Results from this study are expected to provide useful guidance in 
exploiting the negative Poisson’s ratio to design layered anisotropic 
composite structures for improved stability. The proposed approach also 
provides a unique capability of isolating the auxeticity effect from the 
concurrent changes in stiffness matrices, thereby unraveling the true 
auxeticity effect for other related studies that investigate the perfor
mance gains (e.g., low velocity impact, indentation, fraction toughness) 
through introducing auxeticity.
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